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The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible
substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory
is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly non-
linear equations are then derived from these equations that, in the limit of large wall damping and/or large wall
tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more
significant, so we also use a long-wave approximation in conjunction with integral theory to derive three
strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric
flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall
tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing
wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and
lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which
the free surface and underlying substrate come into contact in finite time.
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I. INTRODUCTION

The dynamics of thin films have been well studied over
the past decades due to their relevance to a variety of appli-
cations in industrial, biophysical, and daily life settings �1,2�.
Films flowing down an incline under the action of gravity
have received particular attention due to their importance in
applications, for instance, in reaction engineering and distil-
lation, and in the design of heat exchanger units for heating
and cooling �3�. Early experimental work by Kapitza �4,5�
and the more recent studies by Alekseenko et al. �6�, Gollub
et al. �7–9�, Nosoko et al. �10–12�, and Bontozoglou et al.
�13,14� have demonstrated that this flow is accompanied by
the development of large-amplitude waves. The work by Liu
et al. �9� showed that the wave structure downstream of the
inlet can be controlled via periodic forcing of the flow rate at
the inlet and also demonstrated the existence of secondary
instabilities, following the initial bifurcation from a flat-film
steady state, that are responsible for transitions from two- to
three-dimensional wave patterns.

Linear stability analyses of the waveless solution when
gravitational forcing is balanced by viscous drag were car-
ried out by Yih �15,16� and Benjamin �17� who showed this
base state to be unstable to long-wavelength disturbances
due to the presence of inertia. An evolution equation for the
film thickness was then derived by Benney �18�, which ac-
counts for inertia, hydrostatic pressure, and capillary and vis-
cous effects; this equation was then used to model the dy-
namics in the nonlinear regime. Falling film dynamics in the
nonlinear regime have also been studied by a number of
investigators �1,3,19–28�. In the Benney equation and in
other equations derived using a similar approach, inertia en-
ters the problem at order �, which is the film aspect ratio,

assumed to be small. Consequently, these equations cannot
be used to model the film dynamics at moderate to large
Reynolds numbers �23,29–33� often leading to finite-time
“blow-up” of the solutions. Weakly nonlinear evolution
equations such as the celebrated Kuramoto-Sivashinsky
equation have also been derived �it is possible to do so from
the Benney equation, for instance� �34–44�. The solutions of
these equations remain bounded and can be periodic, quasi-
periodic, or chaotic depending on the length of the spatial
domain �39,45–50�.

Complementary to this are approaches involving a com-
bination of boundary-layer theory and an integral approxima-
tion that relies on the use of a semiparabolic profile as a
closure relation for the film streamwise velocity distribution.
This approach was pioneered by Kapitza �51� and Shkadov
�52� and leads to a strongly coupled pair of nonlinear evolu-
tion equations for the film thickness and volumetric flow
rate. These equations do not suffer from the blow-up prob-
lem and are valid at higher Reynolds numbers, but they do
exhibit solution nonuniqueness �52–55�. Nevertheless, the at-
tracting wave regimes or so-called “family” of “dominating
waves,” that have the largest velocity and maximal film
thickness, compare favorably with experimental observations
�52,56�. If the inclined plane is not vertical, there exists,
however, a discrepancy between the predictions of the Shka-
dov and the Orr-Sommerfeld equations, the latter being ob-
tained via the linearization of the Navier-Stokes equations.
Agreement with the Orr-Sommerfeld equations is obtained
by employing an adjustment to the Shkadov approach by
using a weighted residual in which a semiparabolic velocity
profile is used as a test function and the weighting function is
the test function itself �31,33�.

The studies cited in the brief review above have all been
carried out for the case of a fluid film flowing over a rigid
wall. The extension to falling films flowing over flexible sub-
strates has, to our knowledge, not been considered previ-
ously. Situations where there is a strong coupling between*o.matar@imperial.ac.uk
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the flowing fluid and a flexible structure are of interest since
this scenario arises in a wide range of settings; these include
studying the delay in the transition to turbulence �57�, mod-
eling of airflow in pulmonary airways �58� and blood flow in
the heart �59�, the use of rubber-covered rolls to reduce de-
fects in coating process �60�, and instabilities near polymer
interfaces �61�. More recently, Matar and Kumar showed that
wall flexibility can have a considerable effect on the rupture
of thin films �62� and can destabilize a ridge formed at the
contact line in flow down an inclined plane �63�. It is there-
fore expected that the properties of a flexible wall will have
a significant effect on the dynamics of a falling film. We aim
to generate the appropriate governing equations, investigate
the inter-relation between those that are derived in different
limits, and determine whether the flexible substrate acts to
damp out or exacerbate instabilities.

We first, in Sec. II C, use long-wave theory to derive a
pair of coupled equations for the film thickness and wall
deflection that represent an extension to the Benney equa-
tion. A pair of weakly nonlinear equations then emerge from
this as an extension of the Kuramoto-Sivashinsky equation.
We then use, in Sec. II D, a similar approach to that of
Shkadov to derive three coupled equations for the film thick-
ness and volumetric flow rate that are now coupled to wall
deflection. Both these and the Benney-like equation emerge
by taking different limits. In both cases the linear stability of
the equations is examined �Sec. III� together with the behav-
ior of the systems in the nonlinear regime �Sec. IV�. The
predictions of the three sets of equations are then compared
and indicate that wall flexibility promotes film instability.
The weakly nonlinear system exhibits chaotic solutions un-
der certain conditions and the long-wave modified Benney
system suffers from finite-time blow-up, which is absent in
the modified Shkadov system. Some concluding remarks are
given in Sec. V.

II. FORMULATION

A. Governing equations

We consider the dynamics of an incompressible Newton-
ian film of viscosity � and density � overlying an infinitely
long, flexible, impermeable substrate, inclined to the hori-
zontal at an angle �, as shown in Fig. 1. The film is bounded
above by a gas, assumed to be inviscid. A rectangular coor-

dinate system �x ,0 ,z� models the two-dimensional film dy-
namics, where x and z denote the streamwise and normal
coordinates to the inclined substrate. The instantaneous loca-
tions of the gas-liquid and solid-liquid interfaces are z
=h�x , t� and z=−��x , t�, respectively, while their undisturbed
locations are at z=h0 and z=0, respectively. The film flows
under the action of gravity with a velocity field u= �u ,0 ,v�,
in which u and v denote its streamwise and normal velocity
components.

The film dynamics are governed by the continuity and
Navier-Stokes equations

ux + vz = 0, �1�

ut + uux + vuz = −
px

�
+ ��uxx + uzz� + g sin � , �2�

vt + uvx + vvz = −
pz

�
+ ��vxx + vzz� − g cos � , �3�

where p denotes pressure, g the gravitational acceleration,
and � the kinematic viscosity; the subscripts x, z, and t de-
note partial differentiation with respect to x, z, and time t.

The substrate dynamics are governed by a forced mem-
brane equation

�whw��t −
T

�1 + �x
2�1/2�xx = �1 + �x

2��p − pw�

+ 2���x�uz + vx� − �vz + �x
2ux�� ,

�4�

which is the simplest system that couples a restoring force
with the normal force imposed by the fluid. Similar models
have been used in prior work �62–65�. Here �w, hw, and �
denote the substrate density, thickness, and damping coeffi-
cient, respectively, and pw represents the pressure external to
the wall. We have also assumed the substrate to be isotropic
and sufficiently thin for its tension T to remain uniform
across its thickness; it is tethered at one end so that the am-
plitude of deflections normal to its axis far exceed that of
longitudinal deformations. Under these conditions, bending
stresses can be neglected �66,67�.

Solutions of the above governing equations are subject to
the following boundary conditions

u = 0, �t = − v, at z = − � , �5�

corresponding to no-slip and continuity of velocity. At the
upper interface, z=h, the kinematic boundary condition and
the tangential stress and normal stress conditions are

ht + uhx = v , �6�

�1 − hx
2��uz + vx� + 4hxvz = 0, �7�

pg − p + 2�
�1 + hx

2�
�1 − hx

2�
vz = �

hxx

�1 + hx
2�3/2 , �8�

in which pg denotes the pressure of the gas above the film
and � represents the �constant� surface tension of the gas-

FIG. 1. Schematic representation of the flow geometry.
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liquid interface. Here, we have made use of continuity in
expressing Eq. �7�, which, in turn, was used to obtain Eq. �8�.
Equations �1�–�4� admit steady solutions satisfying the

boundary conditions given by Eqs. �5�–�8�: h̄=h0, �̄=0, v̄
=0,

ū =
g sin �

2�
z�2h0 − z� ,

p̄ = pg + �g�h0 − z�cos � , �9�

and pw= p0+�gh0 cos �.

B. Scaling

The governing equations and boundary conditions are
rendered dimensionless using a scaling based on the equilib-
rium film thickness h0

�x,z,h,�� = h0�x̃, z̃, h̃,�̃�, �u,v� = U�ũ, ṽ� ,

t = �h0/U�t̃, p = �U2p̃ , �10�

and the representative velocity scale U� ū�z=h0�
=g sin �h0

2 /2� that is the steady surface velocity; here, the
tildes, which are subsequently suppressed, denote dimen-
sionless quantities. The dimensionless Navier-Stokes equa-
tions are then given by

ut + uux + vuz = − px +
1

Re
�uxx + uzz� +

2

Re
, �11�

vt + uvx + vvz = − pz +
1

Re
�vxx + vzz� −

2

Re
cot � , �12�

where Re�Uh0 /� is the Reynolds number; the continuity
equation remains unaltered from Eq. �1�. The dimensionless
version of Eq. �4� is expressed by

B�t −
1

Cw

�xx

�1 + �x
2�1/2 = Re�p − pw��1 + �x

2�

+ 2��x�uz + vx� − vz�1 − �x
2�� ,

�13�

where B��whw�h0 /� provides a dimensionless measure of
wall damping effects, Cw��U /T is a wall capillary number
and pw= pg+ �2/Re�cot �. Note that B can be rewritten as B
= ��whw /�h0����h0

2 /��, which is revealing as it is the product
of the ratio of wall to fluid mass and that of wall to fluid
damping. Wall inertia is assumed to be negligible relative to
wall damping, and that corresponds to the limit
g sin � h0 /���1.

The dimensionless boundary conditions at z=h�x , t� are
expressed by

ht + uhx = v , �14�

�1 − hx
2��uz + vx� + 4hxvz = 0, �15�

Re

2
�pg − p� +

�1 + hx
2�

�1 − hx
2�

vz =
1

2C

hxx

�1 + hx
2�3/2 , �16�

where C��U /� is a capillary number. The boundary con-
ditions at z=−��x , t� remain unaltered. The dimensionless
steady solutions are

h̄ = 1, �̄ = 0, ū = z�2 − z�, v̄ = 0,

p̄ = pg +
2

Re
cot � �1 − z� . �17�

We aim to model the dynamics of long waves. We there-
fore introduce the following rescalings:

x =
	

�
, t =




�
, v = �w , �18�

into the above dimensionless governing equations and
boundary conditions. Here, ��h0 /��1 in which � repre-
sents the wavelength of a typical coherent wavy structure
and thus provides a lateral lengthscale. These rescalings
yield

��u
 + uu	 + wuz� = − �p	 +
1

Re
�uzz + �2u		� +

2

Re
, �19�

�2�w
 + uw	 + wwz� = − pz +
�

Re
�wzz + �2w		� −

2

Re
cot � ,

�20�

u	 + wz = 0, �21�

which then have both � and Re within them. These equations
couple to those of the flexible substrate and upper interface
via

�B�
 −
�2

Cw

�		

�w
= Re�1 + �2�	

2��p�−� − pw� + 2���	�uz + �2w	�

− wz�1 − �2�	
2���−�, �22�

u�−� = 0, �
 = − �w�−�, �23�

h
 + �u�hh	 = �w�h, �24�

�1 − �2h	
2���uz + �2w	��h + 4�2h	wz��h = 0, �25�

Re

2
��pg − p�h� + ��1 + �2h	

2

1 − �2h	
2��wz�h =

�2

2C

h		

�1 + �2h	
2�3/2 .

�26�

These equations, in turn, involve both � and the dimension-
less groups associated with substrate flexibility B and Cw,
and capillary effects C. We focus below on two distinguished
limits Re=O�1� and Re=O��−1�, that correspond to low and
moderate Reynolds numbers, respectively. In both cases,
nonlinear equations emerge, and we are interested in explor-
ing their behavior and inter-relation.
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C. Re=O„1…: Long-wave theory

We introduce the following decomposition for u, v, and p
into Eqs. �19�–�26�:

�u,v,p� = �ū, v̄, p̄� + �û, v̂, p̂� , �27�

along with the following expansions for �û , v̂ , p̂ ,h ,��:

�û, v̂, p̂,h,�� = �u0,w0,p0,H0,�0� + ��u1,w1,p1,H1,�1� .

�28�

To ensure that capillary, wall tension and damping effects are
retained in the leading-order dynamics we also rescale C, Cw,
and B:

C = �2Ĉ, Cw = �2Ĉw, B =
B̂

�
, �29�

where �Ĉ , Ĉw , B̂�=O�1�. This yields a hierarchy of problems
that are solved order by order in powers of �.

1. Leading-order equations

Substituting the expansion into the governing equations
and boundary conditions gives a system of equations that is
readily solved to give the leading order velocity components
and pressure as

u0 = 2�H0 − 1��z + �0� + �0�2 + �0� , �30�

w0 = − �0
 − 2��0 + H0�	��0 + H0��z + �0�

+ H0	��H0 + �0�2 − �H0 − z�2� , �31�

p0 = −
2

Re	cos ��1 − H0� +
1

2Ĉ
H0		
 , �32�

and the following coupled evolution equations for the lead-
ing order height H0 and substrate deflection �0:

H0
 + �0
 + 2��0 + H0�2��0 + H0�	 = 0, �33�

B̂�0
 −
�0		

Ĉw

+
H0		

Ĉ
+ 2 cos � �1 − ��0 + H0�� = 0. �34�

2. The O„�… equations

The relevant equations at O��� are given by

u0
 + �ū + u0�u0	 + w0�ūz + u0z� = − p0	 +
u1zz

Re
,

p1z =
1

Re
w0zz, u1	 + w1z = 0, �35�

B̂�1
 −
1

Ĉw

�1		 = 2 cot ��1 + 2��0	�2�1 + �0� + u0z�−�0�

− w0z�−�0� + Re�p1�−�0� , �36�

u1�−�0
= 2�1 + �0��1 + 2�H0 − 1��1,

�1
 = − w1�−�0
+ w0z�−�0

�1, �37�

H1
 + ��ūz + u0z�H1 + u1��H0
H0	 + �ū + u0��H0

H1	

= w1�H0
+ w0z�H0

H1, �38�

u1z�H0
= − ūzz�H0

H1, �39�

cot � H1 + w1�H0
w0z�H0

−
Re

2
�p1�H0

+ H1p0z�H0
� =

H1		

2Ĉ
.

�40�

Here u1�H0
, w1�H0

, p1�H0
, and p1�−�0

are given by

u1�H0
= 2��0 + H0���1 + H1� +

5 Re

6
��0 + H0�5��0 + H0�	

−
Re

2
��0 + H0�2p0	, �41�

w1�H0
= − �1
 − ��0 + H0��2�2�1 + H1��0	 + 2�1H0	

+ ��0 + H0��H1	 + 2�1	�� −
Re

30
��0 + H0�5��0 + H0�	

�96�0	 + 71H0	� +
Re

2
��0 + H0�2�2�0	 + H0	�p0	

−
8 Re

15
��0 + H0�6��0 + H0�		 +

Re

3
��0 + H0�3p0		,

�42�

p1�H0
= −

2

Re	− cos �H1 + 2�H0 + �0�	��0 + H0� +
1

2Ĉ
H1		
 ,

�43�

p1�−�0
= −

2

Re	− cos �H1 + 2�H0 + �0�	��0 + H0� +
1

2Ĉ
H1		

− H0	�H0 + �0�
 . �44�

Note that in the absence of wall deflections ��0 ,�1�→0, we
obtain

u1�H0
= −

Re

2
H0

2p0	 +
5 Re

6
H0

5H0	 + 2H0H1,

w1�H0
=

Re

3
H0

3p0		 +
Re

2
H0

2H0	p0	 −
71 Re

30
H0

5H0	
2

−
8 Re

15
H0

6H0		 − H0
2H1	, �45�

where p0 is given by Eq. �32�, which agree with the expres-
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sions obtained by Benney for the disturbance velocity com-
ponents �18,44�. Notably in this limit, p1 is not required.

Evolution equations for the film thickness and substrate
deflection can be obtained, correct to O���, by adding Eq.
�33� to � multiplied by Eq. �38�, and adding Eq. �34� to �
multiplied by Eq. �36�:

d
 + 	2

3
d3 + ��8 Re

15
d6d	 −

2

3
cot �d3H	� +

�

3Ĉ
d3H			


	

= 0,

�46�

B̂�
 − 2�d − 1�cos � −
1

Ĉw

�		 +
1

Ĉ
H		 − 2�d�2� − H�	 = 0,

�47�

where d=H+�= �H0+�H1�+ ��0+��1�. Equations �46� and
�47� are therefore the natural extension of the Benney equa-
tion to account for substrate deflection in addition to inertia,
viscous retardation, and capillarity. It is anticipated that these
equations will suffer from the same problems as those that
plague the Benney equation, that is, the occurrence of finite-
time blow-up, where the assumptions underlying this equa-
tion become invalid.

3. Weakly nonlinear evolution equations

Here, we focus on �=� /2; indeed we shall for clarity use
�=� /2 henceforth unless stated otherwise, i.e., a vertical
wall. The weakly nonlinear limit is of interest for the onset of
instability and as an accessible model that shows how non-
linearity affects the flow. We introduce the following forms

for H and �: H=1+�H̃ and �=��̃, into the Benney-like
equations. Substitution of this expansion into Eq. �46� yields

d̃
 + 2d̃	 + 4�d̃d̃	 + ��8 Re

15
d̃		 +

1

3Ĉ
H̃				� = 0 + O��2� .

�48�

It is convenient to remove the linear first derivative term by

moving to a moving coordinate 	̃=	−2
̃ /�, which results in

the following equation for d̃:

d̃
̃ + 4d̃d̃	̃ +
8 Re

15
d̃	̃	̃ +

1

3Ĉ
H̃	̃	̃	̃	̃ = 0. �49�

Introduction of the rescalings 
̃=a1t, 	̃=a2x, and �d̃ , H̃ , �̃�
=a3�d ,H ,��, where a1, a2, and a3 are given by

a1 =
75

64 Re2Ĉ
, a2 = � 5

8 Re Ĉ
�1/2

, a3 = 	�2Re

15
�3

Ĉ
1/2

,

�50�

finally yields the fluid depth equation in its canonical form

dt + ddx + dxx + Hxxxx = 0. �51�

Repeating the above procedure for Eq. �47� leads to

��x + ��xx − Hxx = 0, �52�

where ���5B̂2Ĉ /2 Re�1/2 and �� Ĉ / Ĉw and the elastic ef-
fects are now encapsulated in just two controlling param-
eters. Equations �51� and �52� are an extension of the
Kuramoto-Sivashinsky equation allowing for a flexible sub-
strate. The parameter � represents a ratio of wall damping,
inertial and surface tension forces, and � is a ratio of wall
and surface tension. Below, increasing � and � will be inter-
preted as an increase in wall damping and wall tension, re-
spectively.

It is also possible to obtain a relation between � and H by
first integrating Eq. �52� once to obtain �x+ ��̄ /���=Hx /�
+c1�t�, and recasting this as �e��/��x��x=e��/��x�Hx /�+c1�;
integration of this result leads to

� =
�

�
c1�t� + e−��/��xc2�t� +

1

�
�H − H�x=0e−��/��x�

−
�

�2e−��/��x�
0

x

e��/��x�Hdx�. �53�

Using periodicity �with period 2��, the following relations
for the time-dependent functions c1 and c2 are obtained:

c1�t� =
�

�
���x=0 − c2�t�� , �54�

c2�t� =

−
�

�2e−2��/��
0

2�

e��/��x�Hdx� +
H�x=0

�
�1 − e−2��/��

1 − e−2��/� .

�55�

As a result, the following expression can be obtained for �:

� = ��x=0 +
1

�
�H − H�x=0e−��/��x� −

�

�2e−��/��x�
0

x

e��/��x�Hdx�

+ c2�t��e−��/��x − 1� . �56�

D. Re=O„�−1
…: Integral theory

We now turn our attention to a different limit, where the

Reynolds number is larger and so we set Re=�−1Rê. In order
to retain the effects of substrate flexibility and capillarity at
leading order, we rescale C, Cw, and B as follows:

C = �3Ĉ, Cw = �3Cw
ˆ , B =

B̂

�2 . �57�

Substitution of these rescalings into Eqs. �19�–�26� yields

u
 + uu	 + wuz = − p	 +
1

Rê
�uzz + 2� + O��2�, pz = 0,

u	 + wz = 0, �58�
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B̂�
 −
1

Ĉw

�		 = Rê�p�−� − pw� + O��2� , �59�

with boundary conditions

u�−� = 0, �
 = − �w�−�, �60�

h
 + �u�hh	 = �w�h, �uz�h = 0, p = pg −
1

Wê
h		, �61�

where Wê�Rê Ĉ is a Weber number. Since pz=0, the pres-
sure is given by

p = pg −
1

Wê
h		, �62�

whence the substrate deflection evolution equation is given
by

B̂�
 −
�		

Ĉw

= Rê��p −
h		

Wê
� , �63�

where �p� pg− pw.
Integration of the x component of the Navier-Stokes equa-

tions from z=−� to z=h and making use of the Leibniz rule,
the continuity equation, the kinematic conditions at the gas-
liquid and liquid-solid interfaces, and the no-slip condition
yields

q
 + ��
−�

h

u2dz�
	

=
1

Wê
�h + ��h			 +

1

Rê
�− uz�−� + 2�h + ��� ,

�64�

where q��−�
h udz is the volumetric flow rate. Integration of

the continuity equation and making use, once again, of the
kinematic conditions at both interfaces and the no-slip con-
dition yields

h
 + q	 +
1

B̂
�Rê �p +

�		

Ĉw

−
h		

Ĉ
� = 0. �65�

At this point, we choose the following closure for u,
which satisfies the no-slip and no-stress conditions at the
liquid-solid and gas-liquid interfaces, respectively:

u = −
3q

2�h + ��3 �z + ���z − � − 2h� . �66�

Substitution of this equation into Eq. �64� yields the follow-
ing evolution equation for q:

q
 +
6

5
� q2

h + �
�

	

=
1

Wê
�h + ��h			 +

1

Rê
	2�h + ��

−
3q

�h + ��2
 , �67�

which is coupled to Eqs. �63� and �65�. These three coupled
equations then incorporate the effect of wall flexibility and
are valid at higher Reynolds numbers than the Benney-like
equations �46� and �47�.

E. Limiting cases

We have derived two basic systems of evolution equa-
tions: the Benney-like equations, given by Eqs. �46� and
�47�, with their weakly nonlinear reduction, and the higher
Reynolds number system, Eqs. �63�, �65�, and �67�. Here, we
examine a number of limiting cases of interest and demon-
strate the interconnections between these different models.
We first consider equations from the weakly nonlinear limit
given by Eqs. �51� and �52�. For ��1 and �=O�1�, �→0
and Eq. �51� reduces to

Ht + HHx + Hxx + Hxxxx = 0, �68�

which is the Kuramoto-Sivashinsky equation. A similar re-
sult follows for ��1. The limits �� ,��→� correspond to
large wall damping rates and wall tension, and naturally re-
cover the rigid wall case.

For ��1 and �=O�1�, we substitute the following uni-
form expansion in powers of �, �H ,��= �H0 ,�0�
+��H1 ,�1�+¯, into Eqs. �51� �or Eq. �56�� and �52�. To
leading order in �, we get the following equations:

�0 = ��̂ − 1��H0 − 1� , �69�

�̂H0t + �̂��̂�H0 − 1� + 1�H0x + �̂H0xx + H0xxxx = 0, �70�

which is a modified Kuramoto-Sivashinsky equation, where

�̂=1+1/�. Here �0 is enslaved to Eq. �70� and physically
this limit corresponds to weak wall damping, but comparable
wall and surface capillary numbers. In the limit of low wall
tensions ��1 and �=O�1�, an expansion in � can be per-
formed, but further expansion in � reveals that this leads to
an ill-posed equation so we do not consider it further.

In summary, if ��1 or ��1 then �=0 and the
Kuramoto-Sivashinsky equation is recovered. If ��1 and
�=O�1� then the dynamics are described by Eqs. �69� and
�70�, while the ��1 and �=O�1� case is governed by

�0 =
H0x

�
, �71�

d0t + d0d0x + d0xx + H0xxxx = 0; �72�

the �� ,���1 case is described by ill-posed equations and
will not be considered further.

Equations �46� and �47� can also be simplified for B̂�1,

or Ĉw�1, which correspond to high wall damping and ten-
sion, respectively, �=0 and H is described by

Ht + 	2

3
H3 + �� 8

15
Re H6H	 +

1

3Ĉ
H3H			�


	

= 0, �73�

which is the Benney equation as one would deduce for flow
over a rigid wall.

It is also possible to reduce the higher Reynolds number
equation system, Eqs. �63�, �65�, and �67�, to those for Re
O�1�, Eqs. �46� and �47�. We set pg= pw so that �p=0,
rescale as follows:
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Rê = � Re˜, Ĉ =
C̃

�
, Ĉw =

C̃w

�
, B̂ = �B̃ , �74�

and expand uniformly in powers of �: �h ,� ,q�= �h0 ,�0 ,q0�
+��h1 ,�1 ,q1�+¯. Substitution of this expansion and the
above rescalings into Eq. �67� results in leading-order and
first-order evolution equations; adding the leading-order ones
to � times the first-order ones gives

d
 + 	2

3
d3 +

4�

9
Re˜ d6d	 +

�

3C̃
d3H			


	

= 0, �75�

B̃�
 −
�		

C̃w

+
H		

C̃
= 0, �76�

where d= �h0+�0�+��h1+�1�=H+�. Thus one observes that
Eq. �75� agrees with Eq. �46� except for the factor preceding
the inertial term; this is due to the fact that the latter equation
was derived using a formal perturbation expansion whilst
Eqs. �63�, �65�, and �67� were obtained by postulating a clo-
sure relation for the streamwise velocity distribution. The
discrepancy between Eqs. �47� and �76�, which arises at
O���, is due to the procedure used to derive Eq. �47� and
allows the perturbation pressure to depend on the leading
order vertical component of velocity p1z=w0zz /Re; such a
dependence is absent in the case of Eq. �76�.

Finally, for B̂�1 or Ĉw�1, Eq. �63� gives �=0 and Eqs.
�65� and �67� reduce to

ht + q	 = 0,

q
 +
6

5
�q2

h
�

	

=
1

Wê
hh			 +

1

Rê
	2h −

3q

h2 
 , �77�

which are the Shkadov equations �except for rescalings�.

III. LINEAR STABILITY ANALYSIS

Here, we present results of a linear stability analysis of
the various models derived in the previous section to de-
scribe the dynamics of falling films on flexible substrates.

A. Long-wave theory

We perturb Eqs. �46� and �47� as follows:

�d,�� = �1,0� + �d̂,�̂�eikxe�t, �78�

and linearize the resultant equations to obtain the following
characteristic equation for the complex growth rate � as a
function of the �real� wave number k and the relevant system
parameters

�B̂� +
k2

Ĉw

+ 4ik���� + 2ik −
8 Re

15
�k2 + �

k4

3Ĉ
�

+ �� + 2ik −
8 Re

15
�k2��2ik� +

k2

Ĉ
� = 0. �79�

The marginal stability curve is obtained by setting �r=0
which yields a relation between kc, the “cutoff” wave number
beyond which �r�0, and system parameters; this is shown
in Fig. 2 along with dispersion curves, which depict the de-

pendence of �r on k. Inspection of Fig. 2 reveals that for B̂
�1, that is, for relatively weak wall damping, decreasing the
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FIG. 2. Dispersion curves

showing the effect of varying B̂

�a� and Ĉw �b� on the linear stabil-
ity of the falling film; �c� marginal
stability curve. Unless stated oth-

erwise in the legends, B̂=Rê

=Wê= Ĉ= Ĉw=1.
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magnitude of wall tension by increasing Ĉw is destabilizing

leading to a large increase in kc. For larger values of B̂,
however, kc increases with wall tension, as shown in the inset

in Fig. 2; this trend reversal occurs for a value of B̂ close to

unity. For a given value of Ĉw, kc exhibits an overall decreas-

ing trend with increasing B̂ and, for weak wall tension, kc has

a maximum for small B̂ and a shallow minimum at interme-

diate B̂ values.
In Fig. 2 we also show the dependence of the dispersion

curves on variations in B̂ and Ĉw. These curves exhibit a
range of wave numbers for which �r�0 indicating a linear
instability, and possess well-defined most dangerous and cut-
off modes. It is clearly seen in Fig. 2�a� that decreasing the
relative significance of wall damping leads to an increase in
the maximal growth rate and a shift of the wave numbers
associated with the most dangerous and cutoff modes to
larger values. We also show an example wherein decreasing
the magnitude of the wall tension is destabilizing; this is

depicted in Fig. 2�b�, which was generated with B̂=1.
In the k→0 limit, substitution of the following regular

perturbation expansion for the growth rate ��0+k�1
+k2�2+O�k3� and solution of the resultant sequence of prob-
lems order-by-order in powers of k yields two branches,
which are described by

�  − 2ik +
8 Re

15
�k2 + O�k3� ,

�  −
6i�

B̂
k −

1

B̂
� 1

Ĉw

+
1

Ĉ
�k2 + O�k3� . �80�

These branches correspond to the familiar “hydrodynamic”
mode and an additional “wall mode,” which arises due to
substrate flexibility. These results indicate that inertia is the
destabilizing mechanism in the long-wave limit even in the
presence of wall flexibility, which does not introduce a new
unstable mode. The absence of wall effects from the hydro-
dynamic mode also explains why the dispersion curves
shown in Figs. 2�a� and 2�b� are virtually indistinguishable in
this limit.

We also perturb Eqs. �51� and �52� using the normal mode
expansion provided by Eq. �78� to obtain

� =
�1 + ��k4�1 + � − �k2� + �2k2�1 − k2�

k2�� + 1�2 + �2

− i
k��2 + �1 + ��2k2 − �k4�

k2�� + 1�2 + �2 . �81�

The marginal stability curve is obtained by setting �r=0 and
this yields the following expression:

�1 + ��kc
2�1 + � − �kc

2� + �2�1 − kc
2� = 0 �82�

�note there is also a double root at k=0�, which is shown in
Fig. 3. It can be concluded from this figure that, for a given
value of �, the ratio of wall to surface tension, kc decreases
with �, the modified wall damping parameter. A similar be-
havior to that shown in Fig. 2 is also seen in Fig. 3: for
sufficiently small wall damping, decreasing the wall tension
is highly destabilizing, while for ��3.7, this trend is re-
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versed �see inset in Fig. 3�. Examples of dispersion curves
where decreasing wall damping and tension is destabilizing
are also shown in Fig. 3.

In the k→0 limit, substitution of the following regular
perturbation expansion for the real part of the growth rate
�r�r0+k�r1+k2�r2+O�k3� and the solution of the resultant
sequence of problems order-by-order in powers of k yields
�rk2+O�k3�. This result shows, once again, that wall flex-
ibility does not affect the linear stability of the system in the
long-wave limit.

B. Integral theory

We perturb Eqs. �63�, �65�, and �67� about the steady state
�� ,h ,q�= �0,1 ,2 /3� �and �P=0�:

��,h,q� = �0,1,2/3� + ��̂, ĥ, q̂�eikxe�t. �83�

Substitution of this normal mode decomposition into Eqs.
�63�, �65�, and �67� and subsequent linearization yields the
following characteristic equation for �:

�1 + �2�B̂� +
k2

Ĉw
� +

i

k
�� + �3�	�4 + �B̂� +

k2

Ĉw
�

�� +
k2

B̂Ĉ
�
 = 0, �84�

where �i�i=1, . . . ,4� are given by

�1 � −
k2 Rê

Wê
�6

5
iq0

2k + 2
2�1 + 3q0�

Rê
� , �85�

�2 � − �6

5
iq0

2k +
2

Rê
�1 + 3q0� − i

k3

Wê
� , �86�

�3 �
12

5
iq0k +

3

Rê
, �4 � −

Rê

WêB̂Ĉw

k4, �87�

wherein q0=2/3. In order to determine the marginal stability
curve, we set �r=0 and separate the real and imaginary com-
ponents of Eq. �84�:

�1r + �2r

kc
2

Ĉw

− �2iB̂�i −
1

kc
��4 − B̂�i

2 +
kc

4

B̂ĈĈw

���i + �3i�

− �3r� 1

Ĉ
+

1

Ĉw
��ikc = 0, �88�

�1i + �2rB̂�i + �2i

kc
2

Ĉw

− � 1

Ĉ
+

1

Ĉw
���i

2 + �3i�i� −
�3r

kc
B̂�i

2 = 0.

�89�

Solution of this equation for �i and substitution of the result
into Eq. �88� yields a marginal stability curve, which relates
kc to the relevant dimensionless parameters. This is shown in

Fig. 4. In the limit B̂→�, this reduces to the particularly

simple relationship kc=�4Wê/3. Figure 4 shares qualita-
tively similar features with Figs. 2 and 3: wall flexibility,
characterized by weak damping and tension is destabilizing
and, with increasing damping, decreasing wall tension is sta-
bilizing. The switch-over in the calculated trend occurs at
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lower wall damping rates in the present case and the mar-
ginal stability curves associated with low wall tension also
exhibit more pronounced minima than was seen in Fig. 2.

We have also examined the k→0 limit. Substitution of the
regular perturbation expansion ��0+k�1+k2�2+O�k3�
into Eq. �84� and solving the sequence of problems order-by-
order in powers of k yields the following two branches:

�  − 2ik +
4

9
Rê k2 + O�k3� ,

�  −
1

B̂
� 1

Ĉw

+
1

Ĉ
�k2 + O�k3� . �90�

Inspection of the first asymptotic relation for � shows the
falling film is destabilized by inertia while from the second
relation it can be seen that ��0. These results are also in
line with those obtained from long-wave theory. The results
of our transient numerical simulations are presented next.

IV. NUMERICAL RESULTS

A. Numerical procedures

We begin this section by briefly describing the numerical
procedures employed in carrying out the computations. In
order to solve both sets of equations �46�, �47�, �63�, �65�,
and �67� we have used two numerical routines. One of these
uses centered finite-differences to approximate spatial de-
rivatives with one-sided differences at the boundaries, and
the other employs finite-element discretization in space; both
routines use Gear’s method to advance the solution in time.
The predictions of these two procedures are in excellent
agreement. Numerical solutions are obtained starting from
the following initial condition for h:

�h,H��x,0� = 1 + 0.01  exp�− 5�x − 5�2�, ��x,0� = 0,

�91�

when solving Eqs. �46� and �47�, that is, a small perturbation
from the base state. Equations �91� are supplemented with
q�x ,0�=2/3 when solving Eqs. �63�, �65�, and �67�. The
Gaussian term in h�x ,0� represents a small disturbance to the
film surface which is required to initiate the dynamic evolu-
tion of the flow. The solutions obtained are subject to the
following boundary conditions:

�h,H��0,t� = 1, ��0,t� = 0, q�0,t� =
2

3
,

�h,H��L,t� = 1, ��L,t� = 0, q�L,t� =
2

3
; �92�

where L represents the length of the computational domain.
Up to 4000 and 20 000 grid points were utilized when the
finite-element and finite-difference procedures were em-
ployed, respectively; convergence was achieved upon refine-
ment of the spatial mesh.

In order to investigate the system dynamics in the weakly
nonlinear regime, we follow the approach of Tseluiko and

Papageorgiou �44� and rescale Eqs. �51� and �52� as follows:
x→ �L /��x, t→ �L /��2t, �d ,H ,��→ �� /L��d ,H ,��; this,
then, leads to

dt + ddx + dxx + �Hxxxx = 0, �93�

�̄�x + ��xx − Hxx = 0, �94�

where ���� /L�2 and �̄��L /�. Periodic solutions of the
weakly nonlinear equations given by Eqs. �51� and �52� start-
ing from

H�x,0� = 0.02  cos�x�, ��x,0� = 0, �95�

and subject to H�0, t�=H�2� , t� and ��0, t�=��2� , t� in x
� �0,2�� are found numerically. The equations are well
suited to solutions using spectral methods, and bespoke
methods of dealing with the linear, high-order terms �68� are
of current interest; we adjust their algorithm to incorporate
the additional terms due to substrate flexibility. Cross-
checking was done via computations carried out using MATH-

EMATICA and solutions were obtained for 0.03���1.5,
0.1��̄�10, and 0.1���10. Our numerical results are de-
scribed next.

B. Re=O„1…: Weakly nonlinear dynamics

We begin the presentation of our results by examining
briefly the film dynamics in the weakly nonlinear regime;
this is described by Eqs. �93� and �94�. In Figs. 5 and 6, we
show the effect of varying � on the solutions for H for the
case of a rigid support, that is, with �̄→�; the equations
solved then reduce to the well-known Kuramoto-Sivashinsky
equation. In Fig. 5, the panels depict E=�0

2�H2dx, the L2

norm of the solution and a measure of the disturbance “en-
ergy,” and space-time plots of H, respectively. As shown in
these plots, varying the value of � has a profound effect on
the dynamics �see, for instance, the recent work of Tseluiko
and Papageorgiou �44� and numerous references therein�.

Increasing the length of the film by decreasing � gives rise
to bifurcations to a stable single mode steady state, single
mode steady traveling waves and periodic homoclinic
“bursts” �44� followed by a two-mode steady-state; these are
shown in panels �a�,�d�; �b�,�e�; and �c�,�f� of Fig. 5. Upon
decreasing the value of � further, we observe homoclinic
bursts for �=0.09, which appear to be chaotic �see Figs. 6�a�
and 6�d��, a multimodal attracting solution for �=0.07 �see
Figs. 6�b� and 6�e��, and chaotic solutions for �=0.03 �see
Figs. 6�c� and 6�f��. We have also found that for sufficiently
large � that correspond to short films, the amplitude of the
disturbance applied decays; this case is not shown. We now
consider how substrate flexibility affects the trends observed
in the rigid wall case.

In Fig. 7, we show the effect of varying �̄ and � on the
space-time plots of H and E1, the L2 norm of the solutions
for H; the results for � mirror these and are not shown. We
start by considering the �=0.2 case for which periodic ho-
moclinic bursts are observed in the rigid wall case �see Figs.
5�c� and 5�f��. A transition from chaotic oscillations to time-
periodic attracting solutions follows the increase of �̄ from
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0.1 to 10. Increasing � from 0.2 to 10 results in a transition
from chaotic solutions to two-mode solutions separated by
periodic homoclinic bursts. The dynamics observed in the
large � case are therefore rather similar to those observed in
the rigid wall case; decreasing the values of � �and �̄� leads
to departures from this case and a lowering of the critical
conditions for the onset of chaos; similar trends were ob-
served at higher � values.

We next decrease the value of � to �=0.07. In the rigid
wall case, one would expect there to be a three-mode attrac-
tor preceded by transient oscillations �see Figs. 6�b� and
6�e��. As shown in Fig. 8, increasing �̄ from 0.1 to 10 results
in a transition from chaotic to long two-mode traveling wave
solutions; increasing � from 0.2 to 10 gives rise to a transi-
tion from chaotic to three-mode steady-states preceded by
transient oscillations, which resemble the solutions obtained

FIG. 5. �Color online� Numeri-
cal results for the KS equation
E�t� �=0.4,0.27,0.2 �a�–�c�, re-
spectively, and corresponding
space time plots showing the
evolving structure in �d�—�f�.

FIG. 6. �Color online� Numeri-
cal results for the KS equation
E�t� for �=0.09,0.07,0.03 �a�–
�c�, respectively, and correspond-
ing space time plots showing the
evolving structure in �d�—�f�.
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in the rigid case. It is clearly seen that decreasing the value
of �̄ and � promote chaotic oscillations.

The above trends can be rationalized by considering
Eqs. �93� and �94� for �̄�1 and �=O�1�. This limiting
case can be described by Eqs. �69� and �70�, which, follow-
ing the rescaling, x→ �L /��x, t→ �L /��2t, �d ,H ,��
→ �� /L��d ,H ,��, reads

�̂Ht + �̂2HHx − �−1/2�̂��̂ − 1�Hx + �̂Hxx + �Hxxxx = 0.

�96�

Multiplication of this equation over x from 0 to 2� and mak-
ing use of periodicity �with period 2�� yields

FIG. 7. �Color online� Numeri-
cal results for Eqs. �51� and �52�:
Eh�t� and space-time plots for �
=0.2 and ��̄ ,��= �0.1,1� , �1,1� ,
�10,1� , �1,0.2� , �1,10� shown in
�a�—�e� and �f�—�j�.

FIG. 8. �Color online� Numeri-
cal results for Eqs. �51� and �52�:
Eh�t� and space-time plots for �
=0.07 and ��̄ ,��= �0.1,1� , �1,1� ,
�10,1� , �1,0.2� , �1,10� shown in
�a�—�e� and �f�—�j�.
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1

2

d

dt
�

0

2�

H2dx = �
0

2�

Hx
2dx −

�

�̂
�

0

2�

Hxx
2 dx . �97�

The first and second terms on the left-hand side of Eq. �97�,
which are related to the nonlinearity and the capillary term in
Eq. �93�, are destabilizing and stabilizing, respectively. In the

rigid substrate case, that is, for ��1 so �̂1, decreasing �
leads to the occurrence of chaotic solutions, as shown in
Figs. 6�c� and 6�f�. Inspection of Eq. �97� reveals that de-
creasing � decreases the value of the coefficient of the sta-

bilizing term � / �̂; this promotes the transition to chaos. We
speculate that a similar mechanism must hold with respect to
wall tension to the extent that lowering the wall tension also
increases the wall deformation. We turn our attention now to
examining the flow at Re=O�1�.

C. Re=O„1…: Modified Benney dynamics

Here, we provide a brief discussion of the numerical re-
sults obtained via the solution of Eqs. �46� and �47�. We
show in Fig. 9 the effect of varying � and Re on the film and

wall dynamics with B̂= Ĉ= Ĉw=1. For �=0.05 and Re=1, it
is seen that the flow is accompanied by mild deformations,
characterized by waves in both the film and underlying sub-
strate, which are of small amplitude �see Fig. 9�a��. Increas-
ing the value of � and/or Re gives rise to large-amplitude
wave formation, as shown in Figs. 9�b� and 9�c�. This is to
be expected since increasing � and Re corresponds to an
increase in the inertial contribution. For the values of � and
Re used to generate the results shown in Figs. 9�b� and 9�c�,

the simulations were halted due to finite-time “blow-up,”
which is a feature of equations that are of the Benney type.

In Fig. 10, we present the results of investigating the ef-

fect of varying B̂ and Ĉw on the dynamics. For relatively low

damping rates, characterized by B̂=0.1, the flexible substrate
undergoes substantial deformation, which appears to be simi-
lar in magnitude to the large-amplitude waves exhibited by
the film, as shown in Fig. 10. This result can be explained by

considering Eqs. �46� and �47� in the limit of small B̂ and �:

Eq. �47� reduces to −�Ĉ / Ĉw��		+H		�0. Solution of this
equation subject to Eqs. �92� and starting from ��	 ,0�=0

and H�	 ,0��1, yields ���Ĉw / Ĉ��h−1�.
Increasing the value of B̂ from 0.1 to 10, which corre-

sponds to an increase in the wall damping rates, leads to very
small wall deformations in relation to the wave amplitudes
and recovers the rigid substrate case �see Figs. 10�b� and
10�c��. Increasing the relative magnitude of wall tension by

decreasing the value of Ĉw yields a similar result to increas-

ing B̂ and also recovers the rigid wall case. In contrast, a

decrease in Ĉw has a drastic effect on the dynamics, leading
to the formation of large-amplitude waves in the substrate
and the possibility that the air-liquid and solid-liquid inter-
faces can come into contact in finite time; this is shown in
Fig. 10�e�. In summary, decreasing the magnitude of wall
damping renders the substrate enslaved to the film dynamics

and ���Ĉw / Ĉ��h−1�, while decreasing the wall tension
leads to large wall deformations which occur sufficiently rap-
idly for the wall to come into contact with the air-liquid

interface; increasing B̂ and/or Ĉw recovers the rigid wall
case.
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FIG. 9. Numerical solutions of
Eqs. �46� and �47�. �a� �=0.05,
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=1, t=140.
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D. Evolution at Re=O„�−1
…

Here, we present a discussion of the numerical solutions
of Eqs. �63�, �65�, and �67�, which allow us to explore the
effects of wall flexibility on the system dynamics with sig-
nificant inertial contributions. We begin by examining the
spatiotemporal evolution of the film and substrate, shown in

Fig. 11, with Re=3, Ĉ=0.3, B̂= Ĉw=1; only the case of pg
= pw is considered in the present work and �p=0 in the re-

sults presented below. At relatively early times, disturbances
in � and h form a wave packet, which is convected away
from the inlet, leaving behind a smooth, waveless region. At
later times, large-amplitude waves begin to separate from
this wave packet and propagate rapidly downstream, as
shown in Figs. 11�a�–11�c�. Close inspection of the structures
shown in Fig. 11 reveals that severe depressions in the sub-
strate deflection coincide with the down-slope regions of the
large-amplitude waves in the film. The volumetric flow rate,
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FIG. 10. Numerical solutions

of Eqs. �46� and �47�. �a� B̂=0.1,

Ĉw=1, t=10.2; �b� B̂= Ĉw=1, t
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rameter values are �=0.05, Re=5,
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solutions are shown at
t=50,70,100,140,180 in panels
�a�–�e�, respectively.

MATAR, CRASTER, AND KUMAR PHYSICAL REVIEW E 76, 056301 �2007�

056301-14



q, also exhibits large-amplitude wave structures, which coin-
cide with those of the film, as illustrated in Fig. 12. In con-
trast to the results presented in Sec. IV C, finite-time “blow-
up” was not observed in any of the simulations carried out
via solution of Eqs. �63�, �65�, and �67� in the present work.

In Fig. 13, we show the effect of varying B̂ on the nu-

merical solutions. Decreasing the value of B̂ leads to severe

deformations in the substrate, characterized by large deflec-
tions �see Fig. 13�a��. Positive and negative deflections are
spatially coincident with upwards and downwards sloping
regions of the wavy film, respectively, and the distance be-
tween the air-liquid and liquid-solid interfaces at the peak of
the substrate deflection decreases considerably during the
course of the simulation; this is qualitatively similar to the
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FIG. 12. Evolution of q ob-
tained via numerical solution of
Eqs. �63�, �65�, and �67� for the
same parameters as in Fig. 11.
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results shown in Fig. 10�e� obtained by solving the modified
Benney equations, �46� and �47�, in the case of weak wall
tension. Increasing the relative magnitude of wall damping

via an increase in B̂, results in very small-amplitude substrate
deflections and the formation of solitary waves in the film
preceded by capillary ripples �see Fig. 13�b��; similar results
to those shown in Figs. 13�b� and 13�d� have also been re-
ported in studies of falling films on rigid substrates �3�. The
structures exhibited by q remain qualitatively insensitive to

changes in B̂.

In Fig. 14, it is clearly seen that a decrease in Ĉw leads to

similar results to those associated with large B̂ values, while

decreasing wall tension by increasing Ĉw, on the other hand,
gives rise to large substrate deformations. A comparison of
Figs. 13�a� and 14�b� reveals that the waves in both the film
and substrate in the case of weak wall tension travel faster
and are more pulselike and separated by relatively long, flat
regions than in the weak damping case; in the latter case, the
waves are slower, more spread out and have lower maximal
amplitudes.

V. CONCLUDING REMARKS

We have studied the dynamics of falling films on flexible
inclines and developed evolution equations for the film
thickness and substrate deflection using long-wave theory
and the integral method for low and moderate Reynolds
numbers, respectively. By systematic investigation of these
equations using linear theory and numerical simulations we

can see that the weakly nonlinear equations indicate that de-
creasing the relative magnitude of substrate tension and/or
the rate of its damping leads to severe deformation of the
substrate and promotes the development of chaotic solutions,
which are a feature of these equations in the rigid substrate
case for sufficiently long films. Solution of the modified
Benney and Shkadov equations reveals that increasing the
degree of wall flexibility can lead to situations in which the
air-liquid and liquid-solid interfaces can touch due to severe
substrate deformations. The destabilization produced by low-
ering the wall damping and tension are apparently caused by
an effective weakening of the stabilizing capillary forces at
the air-liquid interface. From a practical perspective, the re-
sults of this work may be useful for designing flexible sur-
faces to promote interfacial instabilities, which would then
lead to improvements in heat/mass transport and mixing. We
have used the simplest model of a flexible substrate and it
would now also be of interest to consider other types of
models for the wall in order to explore the possibility of
using flexible walls to inhibit interfacial instabilities �69,70�.
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